
24

Exp. No.: 03

Date:

DIGITAL DELAY TIMER (LS7212) IN VERILOG HDL

OBJECTIVES:

(i) To construct the Verilog code using HDL

(ii) To design a Verilog code for delay timer using HDL.

AIM:

 (i) To design and construct the Verilog code for delay timer.

SOFTWARE REQUIRED:

Xilinx ISE

THEORY:

CODE DESCRIPTION:

The digital delay timer being implemented is CMOS IC LS7212 which is to generate

programmable delays. The specification of the delay timer can be easily found here.

Basically, the delay timer has 4 operating modes: one-shot (OS), Delayed Operate (DO),

Delayed Release (DR), Dual Delay (DD). Those four modes will be selected by inputs

mode_a and mode_b. The wb [7:0] input is to program the delays according to given

equations in the specification of the delay timer.

FUCNTION TABLE:

Table:1 Function table

mode_a mode_b Mode

0 0 One-shot

0 1 Delayed operate

1 0 Delayed release

1 1 Dual delay

25

BLOCK DIAGRAM:

Figure:3.1 Block diagram of LS7212

VERILOG CODE FOR DELAY TIMER:

module delay_timer_ls7212

 (

 input [7:0] wb,

input clk, input reset,

input trigger, input

mode_a, mode_b,

output reg delay_out_n

);

 reg[7:0] PULSE_WIDTH ;

reg [7:0] DELAY;

 reg [7:0] TIMER=0;

 reg trigger_sync_1=0,trigger_sync_2=0;

wire trigger_rising,trigger_falling; reg

timer_start=0,out_low=0; wire

timer_clear2,timer_clear3,timer_clear; reg

[1:0] mode;

26

 reg reset_timer1=0,reset_timer2=0,reset_timer=0;

wire reset_timer3,reset_det; reg

reset_det1=0,reset_det2=0;

always @(posedge clk) begin

 trigger_sync_1 <= trigger;

trigger_sync_2 <= trigger_sync_1;

reset_timer1 <= reset_timer;

reset_timer2 <= reset_timer1;

reset_det1 <= reset;

 reset_det2 <= reset_det1;

 end

assign trigger_rising = trigger_sync_1 & (~trigger_sync_2);

assign trigger_falling = trigger_sync_2 & (~trigger_sync_1);

assign reset_timer3 = reset_timer1 & (~reset_timer2);

assign reset_det = reset_det2 & (~reset_det1);

always @(trigger_rising,trigger_falling,mode_a,mode_b,wb) begin

 if(trigger_falling == 1 || trigger_rising == 1) begin

 PULSE_WIDTH = wb;

DELAY = (2*wb + 1)/2; mode

= {mode_a,mode_b};

 end

end

always

@(mode,reset,trigger_falling,trigger_rising,TIMER,reset,trigger,PULSE_WIDTH,DELAY,re

set_det) begin case(mode)

 2'b00: // One-Shot Mode

begin

 if(reset) begin

out_low <= 0;

timer_start <= 0;

reset_timer <= 1; end

27

 else if(trigger_rising==1) begin

out_low <= 1; timer_start

<= 1; reset_timer <= 1;

end

 else if(TIMER>=PULSE_WIDTH) begin

 out_low <= 0;

timer_start <= 0;

reset_timer <= 1; end

end

 begin

 if(reset) begin

out_low <= 0;

timer_start <= 0;

reset_timer <= 1;

 end

else if(reset_det==1 && trigger==1) begin

 timer_start<=1;

reset_timer <= 0;

 end

 else if(trigger_rising==1) begin

timer_start <= 1;

reset_timer <= 0; end

 else if(trigger_falling==1 || trigger == 0) begin

out_low <= 0;

 reset_timer <= 1;

timer_start <= 0; end

 else if(TIMER >= DELAY) begin

out_low <= 1;

 timer_start <= 0;

 reset_timer <= 1; end

28

 reset_timer <= 0;

end

 begin

if(reset) begin

out_low <= 0;

timer_start <= 0;

reset_timer <= 1;

end

 else if(trigger_rising==1 || trigger == 1) begin

out_low <= 1; end

 else if(trigger_falling==1) begin

timer_start <= 1;

reset_timer <= 0;

 end

else if(TIMER>=DELAY) begin

out_low <= 0;

 timer_start <= 0;

 reset_timer <= 1; end

end

begin if(reset)

begin out_low

<= 0;

timer_start <= 0;

reset_timer <= 1;

end

else if(reset_det==1 && trigger==1) begin

timer_start <= 1;

reset_timer <= 0;

 end

29

else if(trigger_falling==1 || trigger_rising==1) begin

timer_start <= 1;

 reset_timer <= 0;

 end

 else

 if(TIMER>=DELAY)

 begin

 out_low <= trigger;

timer_start <= 0; reset_timer

<= 1; end

 end

endcase end

 always @(posedge clk or posedge timer_clear)

begin if(timer_clear) TIMER <= 0; else

if(timer_start)

 TIMER <= TIMER + 1;

end

 assign timer_clear = reset_timer3 | trigger_rising == 1 | timer_clear3 ;

assign timer_clear2 = (trigger_rising == 1)|(trigger_falling == 1); assign

timer_clear3 = timer_clear2 & (mode == 2'b11);

if(out_low == 1)

delay_out_n <= 0;

else

delay_out_n <= 1; end

endmodule

TIME BENCH:

module tb_ls7212;

reg [7:0] wb;

reg clk;

30

 reg reset; reg

trigger; reg

mode_a; reg

mode_b;

delay_out_n;

delay_timer_ls7212 uut (

 .wb(wb),

 .clk(clk),

 .reset(reset),

 .trigger(trigger),

 .mode_a(mode_a),

 .mode_b(mode_b),

 .delay_out_n(delay_out_n)

); initial begin

wb = 10;

mode_a = 0;

mode_b = 0;

reset = 0;

trigger = 0;

#500; trigger =

1; #15000;

trigger = 0;

#15000; trigger = 1;

 #2000 ;

trigger = 0;

#2000;

trigger = 1;

#2000;

trigger = 0;

#20000;

31

trigger = 1;

#30000;

trigger = 0;

#2000;

trigger = 1;

#2000;

trigger = 0;

#4000;

trigger = 1;

#10000; reset

= 1; #10000;

reset = 0;

 end initial begin

clk = 0; forever #500

clk = ~clk; end

 endmodule

TECHNICAL SPECIFICATION:

In this Verilog code, we have defined a module called Digital Delay Timer. It takes

several inputs: clk(clock signal), reset (reset signal), enable (enable signal), and delay value

(the desired delay value in number of clock cycles). It provides one output, timer done, which

indicates when the delay has completed.

The module includes two always blocks. The first one is responsible for incrementing

the count register when the timer is enabled and running. The second always block controls the

state of the timer running register based on the enable signal and the count reaching the desired

delay value.

32

OUTPUT ANALYSIS:

Figure: 3.2 Output of digital delay timer

PRE LABQUESTIONS:

1.What is Verilog HDL?

The Verilog Hardware Description Language (Verilog HDL) is a language that

describes the behaviour of electronic circuits, most commonly digital circuits.

2.What is main use age of Verilog HDL software?

Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to

model electronic systems. It is most commonly used in the design and verification of digital

circuits at the register-transfer level of abstraction. Verilog HDL for designing hardware and

for creating test entities to verify the behaviour of a piece of hardware. Verilog HDL is used as

an entry format by a variety of EDA tools, including synthesis tools.

POST LAB QUESTIONS:

1.What is use of delay timer in Verilog HDL?

The digital delay timer being implemented is CMOS IC LS7212 which is to generate

programmable delays. The specification of the delay timer can be easily found here.

Basically, the delay timer has 4 operating modes: one-shot (OS), Delayed Operate (DO),

Delayed Release (DR), Dual Delay (DD).

33

2.Advantage and disadvantage of Verilog HDL?

Advantages

• Verilog HDL allows different levels of abstraction to be mixed in the same model.

• Thus, a designer can define a hardware model in terms of switches, gates, RTL, or

behavioral code.

• A designer needs to learn only one language for stimulus and hierarchical design. of

choice for designers.

Disadvantages

• The control logic is designed with traditional techniques.

• The intent of design gets lost in complexity and details.

• The schematics are accompanied with documentation.

• Portability is an issue.

• Simulation environment for schematic capture design is not same.

RESULT:

 Thus the digital delay timer (LS7212) in Verilog HDL has been stimulated and

the output has been verified successfully.

34

MARK ALLOCATION:

S.

No
Parameters

Mark

Allotted

Mark Awarded

1 Circuit Design/ code

developing and

debugging

/ Trouble shooting

0-3

2 Implementation and

Demonstration
0-3

3 Discussion 0-3

4 Report writing &

Presentation
0-3

5 Contribution & Team

Dynamics
0-3

 Total 15

Signature of Lab In-charge

